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Avenues have been explored of possible improvement of inhomogeneity of a granular material 
using the relationships defining the structure of chemical inhomogeneity of compaCt and granular 
materials and a proper choice of particle size, shape and orientation in the original compact 
material. The results apply generally to granular materials prepared from compact (monolitic) 
samples. It is apparent though that considerations regarding optimum shape and orientation 
of the particles concern mostly metallic materials in the form of cutting chips while do not per­
tain to powdered materials prepared by grinding. The used method consisted of the assessment 
of the dependence of individual components of inhomogeneity on particle size for various 
shapes and orientations. There were essentially three types of dependences found: Non-periodic 
components of inhomogeneity of the granular material depend on particle size and/or shape 
only slightly; p~riodic comp:ments diminish starting from a certain value with growing volume 
of the particle. The regression component increases with the particle's volume. The contradicting 
character of the two latter types of dependences p ointed at the possibility of existence of a mini­
mum (apart from the trivial case of V = 0) on the course of the dependence of the overall variance 
of inhomogeneity of the granular material versus particle volume. This minimum corresponds 
to the sought optimum particle volume. Position of this minimum and hence the optimum volume 
of the particle depend generally on the shape of the particle and its orientation within the 
material. 

Relatively voluminous literature has been devoted to the problem of inhomogeneity 
of granular materials. Its review can b;:: found ref. 1. In this text we shall examine 
another aspect of this problem, namely the quantitative relationship between chemi­
cal inhomogeneity of a granular material and particle size and shape. Quantitatively, 
the inhomogeneity of materials is usually characterized by the inhomogeneity vari­
ance, i.e. by one of the components of the overall variance of results of chemical 
analyses. The other component, as it is well known, is the variance of the measuring 
method . 

The inhomogeneity variance appears due to concentration fluctuations of the ana­
lyzed elements in the material, and, in dependence on the analytical method used, 
on the nonuniform distribution of other elements affecting the analysis. Various de­
fects of crystal lattice may eventually contribute too. 
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More conspicuously the variance of inhomogeneity shows particularly on analyses of 
small samples encountered in modern analytical methods. This calls for the prepara­
tion of as homogeneous materials as possible to serve as analytical standards. 

Inhomogeneity of granular materials may be diminished by improved homogeneity 
of the compact (monolitic) material used for preparation, by mixing (the question 
of mixing has been investigated in a number of papers summarized in reU) and by 
the choice of the size and shape of the particles prepared from the original sample. 
The problems associated with the latter mechanism shall be dealt with in the following 
text. The approach shall utilize results of our earlier studies devoted to the determi­
nation of inhomogeneity of compact materials2 and the determination of inhomoge­
neity of granular materials3 from the knowledge of the characteristics of the inhomo­
geneity of the compact material used for the preparation of the granular sample. 
It is assumed that the basic data regarding the distribution of the analyzed element 
in the compact material are obtained by the electron microprobe. The volume of the 
sample for the microprobe, i.e. the part of the material analyzed in a single analysis4

, 

is in the order of magnitude 10 11m3
• The approaches presented in ree enable the 

inhomogeneity variance to be computed from these data for larger samples of an 
arbitrary shape, i.e. also for samples and shapes of particles prepared from the 
original material. The variance of inhomogeneity of samples-particles - (one-par­
ticle samples) - represent in the modification of ref. 3 a principal datum for the calcu­
lation of inhomogeneity of samples consisting of several such particles such as those 
analyzed by classic analytical methods. 

Principal Concepts and Relations 

The course of concentration c of an analyzed element in a compact material may be 
found on various cuts through the material by the electron microprobe (see e.g. 
the papers devoted to the determination of inhomogeneity of silumine). The mea­
sured concentrations may in turn serve to provide estimates of the mean concentra­
tion c. In addition, one can obtain by regression the course of local mean concentra­
tions Cn which are generally different from c .. 

If the material consists of grains of m phases (designated by the index i = 1,2, ... , 
m), we can also measure the phase concentrations Ci (i.e . concentrations of the ana­
lyzed element in the i-th phase) and determine their overall means ci as well as the 
regression estimate of the course of local means Cir. The data of the microprobe may 
further serve (ref. S) to provide corresponding estimates of the volume concentration 
of the i-th phase Vi> Vir and the densities Sj, Sir. 

The above introduced quantities shall be used to express the deviation of c for 
the concentration c( Q)) measured in a sample Q) 

(1) 
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The quantity chr(w) has been introduced to characterize the inhomogeneity of the 
material. It designates the concentration prevailing in the sample w, had the phase 
concentrations Ci within each phase not been fluctuating and had they equaled their 
local (regressed) mean values cir. For ch'(w) we thus may write 

m 

ch.(w) = L CirVj(W) Sir!Sh,(W) (2) 
i=1 

where vl w) is the true volume concentration of the i-th phase in wand ShrC w) = 
m 

= L vlw) Sjr stands for the density of the sample w under the assumption Ci == Cir. 
i=1 

The deviations [c(w) - c] in Eq. (1) have their corresponding inhomogeneity 
variance Di(w) belonging to the set of samples w. The deviations [c(w) - chr(w)] 
occur due to concentration fluctuations within the phases and the corresponding 
variance is termed the intraphase variance designated by Di( w). The deviations 
[chrC w) - cr] show through even presence of grains of different phase in samples w 
and their corresponding variance is D~(w) while the deviations [cr - c] have corres­
ponding regression variance D;( w). 

The inhomogeneity variances Di(w) and its components Di(w), D~(w) and D;(w) 
are related (neglecting possible correlation of the deviations2 [c(w) - chlw)] and 
[cbr(w) - cr ]) by 

DI(w) = D;(w) + D~(T) + D;(w). (3} 

A full characterization of inhomogeneity of a material necessitates the knowledge 
of the dependence of the components of inhomogeneity on the size and shape of the 
sample w. On taking into considerations only the samples of particles of the size of 
practical importance (particles to be prepared from the original material), the re­
gression variance D;( w) may be regarded as independent of the size and shape of the 
sample w (and as such may be simply designated by D;). This is so because in the prac­
tical range of particle size the course of the concentration Cr within the sample may be 
taken with sufficient accuracy to be linear. Hence the regression estimate for the whole 
sample equals Cr in the center of the sample regardless of its shape and size. 

In case of the intraphase variance the situation is different. For the determination 
of D;(w) from the deviations [C(WfO) - Ch/WfO)] (WfO is the sample analyzed by the 
microprobe) it is necessary to construct the correlation function and to determine 
from it the periodic D;p(w) and the nonperiodic part D;n(w) of the intraphase variance 
D;(w) (Diew) = D;p(w) + D;n(w» . 

In the paper2 the variance D;p( w) was computed from a model which shall be also 
used here as a starting point: It is assumed that the periodic part of the concentration 
fluctuation is given by A cos (27tX I !CX I ) cos (27tX2!CX2 ) cos (27tX3!CX3)' where CX I , cx2 , cx 3. 
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are the periods in the directions of axis Xl' X 2 , X3 of a rectangular coordinate system 
fixed to the examined compact material. It is also assumed that the samples W (in 
this text identical with the particles to be later prepared from the compact material), 
have the shape of parallelepipeds and that the edges of these parallelepipeds, b l , b2 , b3 , 

are parallel to the axes Xl' X 2 , X 3 • For the variance D;p(w) we then have two expres­
sions derived: One accurate, not presented here, and, the other, a simplified one, 
given by (in order to express the dependence of the variance on the volume V = 
= b l • b2 • b3 of the sample w, or on the given ratio b l : b2 : b3 , we shaII use the 
symbols D;p(V) or D;p(hl . b2 • b3 ) instead of D;p(w) and similarly for the remaining 
components of the variance of inhomogeneity): 

(4) 

For the quantities Kio(i = 1,2,3) we may write: if bi ~ biD = iXJn, then KiO = Cfi ; 
if bl > b[O, then K[O = Cji(iXJrr)2 bi 2. The constant Cfi depends on the ratio of the 
period OCi to the size of the compact material in the direction of the axis Xi. (If OCi is 
substantially less than the size of the material in the corresponding direction than 
Cfi ~ 1/2. If, on the contrary, OC i is subtantially greater than the size of the material 
in the corresponding direction then Cfi = 1. In practice this, of course, indicates 
that there exist no periodicity in the given direction). The amplitude A is determined 
from measurements by the microprobe, with the aid of the already mentioned correla­
tion functi0n the variance DHwrc), measured by the microprobe, is split into the perio­
dic part D;p(wro) and the nonperiodic part D;n(wro). For A we then may write: 
A2 = 2D;p(wro). 

For the nonperiodic part of the intraphase variance we shaII use the approximate 
formula of the form 2 

(5) 

In the previous paper the volume V was designated by ka 3
, where a3 represented the 

corrected v~lume of the sample wro analyzed by the microprobe. The constant Vrn 
then must be expressed in the form koa3

; the method of determining ko has been 
published earlier2. 

Existing methods of determination2 of the heterogeneity variance are those for 
samples smaller than the volume of the grain ofthephases, as well as those for samples 
with at least one dimension substantially greater than the dimensions of the phase­
-homogeneous region of the material. In the first case, the variance of inhomogeneity 
is computed from 

D~(V) = D~(O) - V I
/
3 A (6) 
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where D~(O) designates the variance of heterogeneity of infinitesimaly small samples 
and A. is a constant depending on the scatter of the phase (the determination of both 
constant has been described in reU). The shape of the sample - the particle of vo­
lume V - is in accord with the assumptions cubic, which is thought to be a sufficient 
approximation for powdered materials to which Eq. (6) applies. 

F or the determination of the variance of heterogeneity of samples with at least one 
dimension substantially larger than the size of the phase-homogeneous regions 
in the compact material, the m;:thod of parallelepipeds has been worked out2

• 

According to this method W may b;: thought to be composed of parallelepipeds 
(designated by WhO)' whole lateral dimension is given by the depth of the layer 
analyzed by the microprob~ . Its length must be taken so as to provide that each 
parallelepiped consist of a larger number of grains of different phases. On a photo­
graph of the surface of the cut through the material we draw a set of parallel pa­
rallelepipeds, created by repeated shifting of the first parallelepiped in a chosen 
direction. For individual parallelepipeds we then determine the concentrations 
Ch,( WhO) and further procedure is analogous to the determination of the intraphase 
variance: The deviations [Ch.(WhO) - c,J is used to construct the correlation function 
for the given direction and its periodic and the nonperiodic parts serve to calculate: 
i) the periodic and the non periodic parts of the variance of heterogeneity corresponding 
to the samples WhO - the parallelepipeds (i.e. D~P(WhO) and D~n(Who)), and ii) addi­
tional parameters necessary for the determination of the periodic part D~p( W ) (or 
D~p(V), or D~p(bl . b2 • b3)) and the nonperiodic part D~n(w) (or D~n(V), D~n(bl' b2 , 

b3)) of the heterogeneity variance of the samples W from Eqs (4) and (5) in which 
the subscript f is replaced by the subscript h. On assuming that the parallelepipeds 
are oriented in the direction of axis Xl' we substitute for K lo for Eq. (4), for blO 
the larger of the values L, CJ.I/lt and for K 20 and K30 we substitute b20 = CJ.2/lt and 
b30 = CJ.3/lt. There is, however, an alternative way: put blo = CJ.I/lt even in the case 
that CJ.I/lt < Land simultaneously express the constant A from Eq. (4) in a modified 
form as A = Dhp(WhO) .j2nL/CJ.1 in order to keep a similar course for bl > L.This 
alternative shall be used in the following text for its closer analogy to the intraphase 
variance. 

The constant Vhn for Eq. (5) is determined according to ref. 2 by calculating the 
cross sectional area of the characteristic cluster of parallelepipeds Shn (earlier2 

designated kod) and put Vhn = LShn . 
After obtaining the parameters necessary for the determination of the components 

of the inhomogeneity variance (i.e. D~, D;iW ) , D;n(w) and D~(w), or D~p(w) and 
D~n( w)) of the compact material we can use the methods published in ref.3 to de­
termine corresponding components of the variance of inhomogeneity of the granular 
material prepared from the original' compact material. 

The granular materials shall be bassumed to be perfectly mixed (an exact definition 
of this state including references has been published elsewhere3). For such materials 
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the dependence of inhomogeneity on the size of the sample shall be expressed by the 
familiar formula 

(7) 

where kw designates the sample k-times greater by weight than the sample w. 

Thus on dividing the compact material into particles of the same size and shape 
the knowledge sufficient for the overall characterization of inhomogeneity of the 
prepared granular material is that of a single parameter - the variance of inhimo­
geneity of the corresponding one-particle samples. From the knowledge of the para­
meters of inhomogeneity of the compact material we are able such a variance of 
sample oflater prepared particles identical as to size and shape to determine2

•
3

. 

In the following text we shall confine ourselves to the already somewhat simplified 
model according to which all particles of the granular material have the shap;! of 
a bt . b2 • b3 parallelepiped. Corresponding one-particle variance is designated 
D2(b t . b2 • b3). For a set of 1 gram samples for example we obtain according to 
Eq. (7) the variance of inhomogeneity in the form D2(b t . b2 • b3)/" where" is the 
mean number of particles in a single sample (the weights of the particles are not gene­
rally the same). On designating by Va the volume of a 1 gram sample, then" = vol . 
!(b t • b2 • b3). By preparing from the same compact material particles of different 
size or shape (other ratio b t : b2 : b3) we obtain for the given set of 1 gram samples 
a generally different variance for we have a different particle variance as well as 
a different mean number of particles in the set. 

The variance of inhomogeneity of the set of 1 gram samples, which shall be de .. ·" 
. signated by D2(1 g; bt . b2 . b3 ), may be taken for the criterion of suitability of the 

choice of the size and shape of the particles. As already mentioned, Eq. (7) gives the 
following transformation 

(8) 

Using this relation one can transform individual components of the inhomogeneity 
variance in the compact material and their dependences on the size and shape of the 
sample into corresponding dependences of the inhomogeneity of the granular material 
represented by the variance D2(1 g; b l . b2 • b3 ). 

The Dependence of Inhomogeneity of the Granular Material on the Particle Size 

In this paragraph we shall compare sets of particles prepared from the same compact 
material while it is assumed that individual sets differ only in the volume of the par­
ticles and their shape (the ratio b i : b2 : b3 is the same for all sets). 
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Eq. (8) may then be replaced by a simpler equation 

(9) 

where V = b1 • b2 • b 3 is the volume of the particle of the examined granular material. 
As above mentioned the regression component of the one-particle variance is 

independent of particle volume: D;(V) = D; = const. Substituting into Eq. (9) 
we arrive at corresponding dependence of the component D;(1 g; V) on V 

(10) 

The regression component of the variance of 1 g samples thus grows linearly with 
particle volume. The plot is a straight line passing through the origin (Fig. 1, curve r) 

For calculation of the nonperiodic component of the intraparticle variance and 
the variance of heterogeneity, we have the same formula (5). Both components shall 
be therefore solved for simultaneously omitting the index f or h and retaining only 
the index n. Substituting Eq. (5) into (9) we obtain 

(11) 

A graphical form of Eq. (11) is the curve n in Fig. 1: for V ~ Vn the variance 
D~(1 g; V) grows with the volume V linearly from zero up to (Vn/vo) D~(wo); for V ~ Vn 
it remains constant. The periodic components of the intraphase variance of hetero­
geneity, for which Eq. (4) applies, shall be solved for also simultaneously. Formula 
(4), however, shall be first rearranged into a form more suitable for the study of the 
variance of heterogeneity D; as a function of particle volume V. (The derivation of 
a general and more accurate dependence of the variance D~(1 g; V) on the volume V 
shall be described below). Assuming that the periods OC 1, oc2 , oc 3 are finite, the variance 
D;(V) may be expressed in the form analogous to Eq. (5) 

(12) 

The constant C is given by C = Co. C1 . C2 . C 3 • The constants C1 • C2 • C3 appear 
implicitly in Eq. (4); the constant C designates the coeffient of D;(wo) in the expres­
sion for the amplitude of the oscillations squared A 2(i.e. for the intraphase variance 
Co = 2 and for rhe variance of heterogeneity either Co = 2 or C = 2 (nL/oc1)2. The 
characteristic volume Vp is defined by Vp = b10 • b20 • b30 = OC 1 • OC 2 • OC 3 • n- 3

• 
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Substituting Eq. (! 2) into (9) for D2(l g; V) we obtain 

(13) 

Corresponding curve is the curve p in Fig. I: in its first part (V ~ Vp) the variance 
D2(1 g; V) grows linearly from ° to (Vp/vo) D;(wo) C; in the second part (V ~ Vp) 
it decreases with the first power. 

For the interval of validity of Eq. (6) we obtain (by substituting (6) into Eq. (9» 
for the variance of heterogeneity of 1 g samples the following expression 

(14) 

The function (14) may be approximated by the curve n in Fig. 1: the variance D(l g; V) 
(or its estimate D2( 1 g; V» grows linearly with V from zero up to Vh = 0·1 D~(O) A. - 3 

where it reaches 0·ID:(0)A.- 3
• Its further course is a constant while for volumes V 

approaching the size of the phase homogeneous regions in the original compact 
material Eqs (6) and (14) are no longer valid. 

The course of the overall variance of inhomogeneity D;(1 g; V) of I g samples 
ofthe granular material in dependence on the volume V of particles of constant shape 
may thus be represented by the curve i which is a combination of the curve rand 
several curves p and n. Fig. 1 is only a simplified representation of a probably more 
complicated reality (there exist probably more curves of type p and n). Nevertheless, 
it clearly evidences the possibility of existence of a minimum variance of inhomo-~' 
geneity variance of the granular material Di,(l g; Yo) at an optimum volume of par­
ticles (not considering of course the trivial case V = 0). A condition for the existence 
of the minimum is that the curve p have at the point V = Vp a value larger than that 

q:r1g;V) 

FIG. ! 

Dependence of the Inhomogeneity Variance 
(i) and its Components (r, p, n) for a Set 
of! gram Samples on Volume Vof a Particle 
of a Granular Material Consisting of Identi­
cal Particles 
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on the curve r. By comparing Eqs (10) and (13) we obtain for this stimulation the 
expression 

(15) 

Choice of Particle Shape and Their Orientation within the Material 

It has been noted that the regression variance D; of one-particle samples is indepen­
dent of both the size and shape of the particles. Eq. (10) then gives that the regression 
variance of 1 g samples D;(1 g; b i . b2 • b3 ) depends only on the volume V = b l . 

. b2 . b3 of the particles and not on their shape, i.e. on the ratio bi : b2 : b3 • 

For the periodic part of the intraphase variance or the heterogeneity variance 
the situation is more complicated. In order to examine this case we shall construct 
the dependences of D~(1 g; b l . b2 • b3 ) on the volume V = b l . b2 • b3 for various 
shapes of particles, i.e. for various ratios b I : b2 : b3 (for a given graph the ratio 
bl : b2 : b3 is constant). 

It is assumed again that the periodic component of the concentration fluctuation 
within the compact material has in the direction of the axes XI' X 2 , X3 of a rectangular 
system firmly fixed to the compact material periods lXI' IX2' IX3 and that the par­
ticles shaped as parallelepipeds of size b l , b2 , b3 were in its original position oriented 
within the compact material axially (i.e. bi II Xi' i = 1,2,3) and, further, that the 
shape of the particle is the same and fixed by the ratio bI : b2 : b3 • 

The dependence of the one-particle sample variance D~(bI' b2 , b3 ) on the volume 
V = bI , b2 , b3 shall be computed from Eq. (4). Proceeding from V = 0 the character 
of the dependence in Eq. (4) varies whenever some of the edges bi reaches IXJrt in size. 
Suppose that this critical value is reached first by the edge b3 and designate in this case 
its size by b31 (b31 = !X 3/rt) the size of the remaining edges is bll and b21 and corres­
ponding volume VI = bll . b21 . b31 . With further increase of the volume let the 
characteristic size be reached by the edge b l' Analogously we designate b 12 (b 12 = 

= !XI/rt) and V2 = b12 • b22 . b32 . Finally, the critical size is reached by the edge b2 

and we designate corresponding value by b23 (b23 = !X2/rt) and corresponding volume 
by V3 = b13 . b23 • b33 • 

In individual intervals the one-particle variance D~(bI . b2 • b3 ) computed from 
Eq. (4) and corresponding variance of one-gram samples computed from Eq. (9) 
is D~(1 g; b1 • b2 • b3 ) are given by: 

The first interval 0 < V ~ VI' (0 < b l ~ bII' 0 < b2 ~ b2I , 0 < b3 ~ b31 ) 

(16) 

(17) 
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D!(b l • b2 • b3 ) = D;(wo) C(b 3 db 3Y (18) 

D!(l g; bl . b2 • b3 ) = (l/vo) D!(wo) C(IX 3/rr)2 . bl . b2 /b 3 • (19) 

D!(b t . b2 • b3 ) = D!(wo) C(b 31 /b 3 )2 (b12/b l )2 (20) 

D!(1 g; bl • b2 • b3 ) = (l/vo) D!(wo) C(IX3/rr)2 (1X 1/rr)2 b2(b 3 bt t I • (21) 

D!(b l • b2 • b3 ) = D~(wo) C(b31 /b 3? (bu!b l )2 (b 23/b2 )2 (22) 

D!(1 g; b l • b2 • b3 ) = (l /vo) D;(wo) C(IXI . IX2' IX3)2 1t-
6

. (b t . b2 • b3t t
. (23) 

The course of the dependence of the variance D;(1 g; b I . b2 • b3) on particle volume 
V in the first interval is linear (D;(1 g; V) '" bt . b2 • b3 = V), in the second interval 
grows proportionally to b31 . b2 • b3 /b 3 = (b 3 t!b 3)2 . b t . b2 . b3 = (VdVy /3 . V = 

= V~ . V l
/
3 and thus proportinoally to V 1

/
3. In the third interval D;(1 g; V) ~ 

~ V- l
/

3 and in the fourth interval D;(1 g; V) ~ v-to 
Examples of the dependences of the variance D;(1 g; b l . b2 • b3 ) on the volume 

V = b l . b2 • b3 computed for various ratios b t : b2 : b3 for selected periods IXI = 8'"' 
(le:ngth units), IX2 = 9 and rx3 = 10 are shown in Figs 2 and 3. Each curve starts from 
origin (point 0) and is designated by a digit at its heighest point. For orientation 
the curve 6 in Fig. 2 passes through points 0, A, 6, B, C. 

From comparison of the curves plotted in Fig. 2 o:ne can derive a rule for the deter­
mination of optimum orientation of particles in the compact material. For graphs 
1 - 6 the shape of the particle is identical, the edges are in the ratio 8 : 9 : 10. The 
curve 1 corresponds to such an orientation of particles in the compact material when 
the ratio b t : b2 : b3 is the same as that of the periods of the fluctuation field IXt : IX2 : IX3 

(i.e. 8 : 9 : 10). In this case, as may be seen; the second and the third interval dissappear 
as the co:ndition bi == rxJrr becomes effective for i = 1,2,3 simultaneously (and hence 
Vt = V2 = V3)' This curve corresponds to the approximation used in the third 
paragraph (substitution of Eq. (4) by (12)) and as such is identical with the curve p 
in Fig. 1. 

The graphs 2 --:5 correspond ,gradually to the orientations given by the ratios 
8: 9: 10; 9 : 10: 8,10: 8 : 9. The curve 6 corresponding to the orientation given by 
the ratio 10 : 9 : 8 has in the sections 0 -'- A and B - C the course identical with curves 
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1-5. In the section A-B it reaches minimum values in comparison with the others 
(in section A-6 together with the curve 5, in section 6-8 common with the curve 4. 
The curve 6 thus corresponds to optimum orientation of particles of given shape. 
The corresponding ratio 10 : 9 : 8 thus means that optimum orientation of particles 
in the compact material is such whose shortest edge has identical direction with that 
of the longest period and the longest edge has the direction of the shortest period. 

Thus conclusion confirmed also by the curves 7 -9, corresponding to particles 
shaped as slabs: The curve 7 corresponds to the orientation given by the ratios 
1 : 2 : 2, curve 8 to the ratio 2 : 1 : 2 and curve 9 to 2 : 2 : l. 

The curves shown in Fig. 3 serve to find optimum shape of the particle. The curve 
10 corresponds to particles shaped as a cube, curve 11 to a slab (2: 2: 1), curve 12 
to parallelepiped (4: 3: 2), curve 13 to a rod (2: 1 : 1), curve 14 to a thinner slab 
(3 : 3 : 1), curve 15 to parallelepiped (3 : 2 : 1) curve 16 to a slimmer rod (3 : 1 : 1). 

Curves 10-16 point at the following conclusion: For particles of the same volume 
the variance D~(1 g; b l . b2 • b3 ) is the smaller the farther away the shape of the 
particle from cube (i.e. the thinner the slab or the rod). In deciding between the slab 
and the rod for a definite material one has to take into consideration also the course 
of the remaining components of the variance of inhomogeneity, particularly that 
of D;(1 g; V) as well as technical feasibility of preparing particles of the selected shape. 
Quantitatively, the rod-like shape may be regarded as suitable for smaller particles, 
the slab is more suitable for larger particles. For the case of the existence of a minimum 
on the course of the inhomogeneity variance D;(1 g; b l . b2 b3 ) we shall have instead 

2000 4000 

FIG. 2 

Dependence of the Periodic Component 
of the Inhomogeneity Variance on Particle 
Volume for Various Orientations of the 
Particles in the Original Compact Material 
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FIG. 3 

Dependence of the Periodic Components 
of the Inhomogeneity Variance on Particle 
Volume for Various Shapes of the Particle 
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of Eq. (15) (derived from comparison of Eqs (10) and (13)) a more general condition 
starting from Eqs (10) and (19) 

(24) 

In words this means that at the terminal point of the second interval (V = V2 ) the 
curve p has a larger value than curve r. For slabs, as may be apparent from Fig. 3, 
the ratio VI /V2 has a larger value than that valid for rods. 

In the examination of the dependence on non periodic components of the inhomo­
geneity variance on the shape of particles and their orientation within the material 
we shall proceed similarly as in the previous case. The results in the search for the 
optimum shape of the particle and its optimum orientation, however, playa minor 
role and we shall therefore confine ourselves to a brief description only. For a given 
shape of the sample particle one can find from D~(bl . b2 • b3) and D~(l g; b l . b2 • b3) 

the magnitudes of the volumes VI' V2 , V3 (for Vn we have from curve n in Fig. 1 
VI ~ Vn ~ V3) delimiting the dependence of D~(1 g; V) on v: to four intervals: for 
V ~ VI the variance D~(1 g; V) grows with the volume Vas in curve n (Fig. 1) i.e. 
proportionally to V, for VI ~ V ~ V2 D~(1 g; V) grows with V2

/
3, while for V2 ~ 

~ V ~ V3 with VI /3 and, finally, for V ~ V3 D~(1 g; V) remains constant. . 

From a series of curves shown in this work for various particle shapes a general 
tendency has been found leading to the conclusion that without more detailed in~ 
formation about the inhomogeneity of the compact material the inhomogeneity of 
the granular material prepared from the former can be approximately minimized 
provided that the two following stipulations are met simultaneously: i) the volume 
of the particle is as small as possible and ii) their shape differs as much as possible ._­
from that of a cube (i.e. slabs or rods). 

A substantial role may be played by the orientation of particles in the original 
compact material; the knowledge of the structure of the material, however, is indis­
pensable. The general conclusion of this work (taking into consideration only periodic 
components) is as follows: Optimum orientation of particles in the original compact 
material is such when the shortest edge of the particle has the direction of the longest 
period of the periodic component of concentration fluctuation and the longest edge 
the direction of the shortest period. 

Apart from these qualitative conclusions the paper enables also quantitative con­
clusions to be made on the basis of optimization of parameters of the granular material 
using formulas and approaches presented in this work. ' A prerequisite for their 
application, however, is the knowledge of the parameters of inhomogeneity of the 
original compact material in the sense of ref.2 of which this paper is an extension. 
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